Evolving fuzzy optimally pruned extreme learning machine for regression problems

نویسندگان

  • Federico Montesino-Pouzols
  • Amaury Lendasse
چکیده

This paper proposes an approach to the identification of evolving fuzzy Takagi–Sugeno systems based on the optimally pruned extreme learning machine (OP-ELM) methodology. First, we describe ELM, a simple yet accurate learning algorithm for training single-hidden layer feed-forward artificial neural networks with random hidden neurons. We then describe the OP-ELM methodology for building ELM models in a robust and simplified manner suitable for evolving approaches. Based on the previously proposed ELM method, and the OP-ELM methodology, we propose an identification method for selfdeveloping or evolving neuro-fuzzy systems applicable to regression problems. This method, evolving fuzzy optimally pruned extreme learning machine (eF-OP-ELM), follows a random projection based approach to extracting evolving fuzzy rulebases. In this approach systems are not only evolving but their structure is defined on the basis of randomly generated fuzzy basis functions. A comparative analysis of eF-OP-ELM is performed over a diverse collection of benchmark datasets against well known evolving neuro-fuzzy methods, namely eTS and DENFIS. Results show that the method proposed yields compact rulebases, is robust and competitive in terms of accuracy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

OP-ELM: Theory, Experiments and a Toolbox

This paper presents the Optimally-Pruned Extreme Learning Machine (OP-ELM) toolbox. This novel, fast and accurate methodology is applied to several regression and classification problems. The results are compared with widely known Multilayer Perceptron (MLP) and Least-Squares Support Vector Machine (LS-SVM) methods. As the experiments (regression and classification) demonstrate, the OP-ELM meth...

متن کامل

A New Classification Method of Epileptic Eeg Signals Using Differential Evolution Optimally Pruned Extreme Learning Machine

An epileptic seizure is a transient event of symptoms due to abnormal neuronal action in the brain. Electroencephalography (EEG) is the neuro physiological measurement of electrical activity in the brain as recorded by electrodes placed in the cerebral cortex. An epilepsy EEG is based on three approaches. First, a scaling and wavelet function of the Multi Wavelet Transform (MWT) offers orthogon...

متن کامل

Autoregressive time series prediction by means of fuzzy inference systems using nonparametric residual variance estimation

We propose an automatic methodology framework for shortand long-term prediction of time series by means of fuzzy inference systems. In this methodology, fuzzy techniques and statistical techniques for nonparametric residual variance estimation are combined in order to build autoregressive predictive models implemented as fuzzy inference systems. Nonparametric residual variance estimation plays ...

متن کامل

On-Line Sequential Extreme Learning Machine

The primitive Extreme Learning Machine (ELM) [1, 2, 3] with additive neurons and RBF kernels was implemented in batch mode. In this paper, its sequential modification based on recursive least-squares (RLS) algorithm, which referred as Online Sequential Extreme Learning Machine (OS-ELM), is introduced. Based on OS-ELM, Online Sequential Fuzzy Extreme Learning Machine (Fuzzy-ELM) is also introduc...

متن کامل

A Robust and Optimally Pruned Extreme Learning Machine

In recent years, the interest in the study of outlier robustness properties in Extreme Learning Machines (ELM) has grown. Most of the published works uses a more robust estimation method than the commonly adopted ordinary least squares. Nevertheless, the ELM network offers other challenges that also influence its robustness properties, such as the number of hidden neurons and the computational ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Evolving Systems

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2010